
189

■ ■ ■

C H A P T E R 6

Inline and List Binding

In Chapter 5, you looked at two of the most important objects in ADO.NET: the DataReader

and the DataSet. You saw how the DataReader is a transient object and provides forward-only,

read-only access to the results of any query you send to the data source. In contrast, the DataSet

is a read-write, random-access representation of any data source that stays in memory even

when the connection to the data source closes. You learned how they both can be populated

with data from a data source, and how you can pull that data into something more useful for

your Web site, such as a business object.

In this and the next chapter, you’ll continue your work with these two objects, as well as

the SqlDataSource, and discover the various ways of retrieving and displaying read-only data

on a page. You’ll also see that the trade-off between the speed of the DataReader and the avail-

ability of the DataSet often makes a difference in the way you build even simple pages.

In this chapter, you’ll learn the following:

• The three types of data-binding: inline binding, list binding, and table binding

• The differences between binding a DataReader or DataSet in code and binding using the

SqlDataSource

• How to perform inline binding to both a DataReader and DataSet

• An alternative to inline binding that returns the same results

• How to perform list binding to a DataReader, DataSet, and SqlDataSource

• How to perform listing binding with Web list controls that allow multiple selections

Data-Binding Techniques
In Chapter 1, I described how a data-aware page is basically a static template into which data

is added dynamically from a data source. This “plugging in” of data to a page is more commonly

known as data binding. You saw data binding in action in Chapter 3 with the SqlDataSource,

and then in Chapter 4, when you actually wrote code to return the results that you wanted from

the database.

190 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

How you implement data binding depends on how you’re accessing the database (are you

using a SqlDataSource or writing code to access the database?), how much data you want to

bind, and to which Web controls you want to bind the data. However, although there are many

variations in data-binding techniques, they all fall into one of the following three categories:

• Binding single columns to the properties or value of a Web control. This is often known

as inline binding.

• Binding a list of values (one column in a table) to a Web control. For convenience, I’ll call

this list binding.

• Binding a table of values to a Web control. For convenience, I’ll call this table binding.

In this chapter, we’ll explore inline binding and list binding. Table binding is covered in

the next chapter. But before we look at the specifics for each technique, let’s review the general

process for data binding with code, how data binding works with the SqlDataSource, and the

Web controls that can be data-bound.

Data Binding in Code

When accessing the database in code, the process for adding a data-bound Web control is

as follows:

1. Add a data-aware Web control to the page.

2. Associate a source of data with the Web control using the DataSource property.

3. Call DataBind() on the Web control or on the Page.

All the examples in Chapter 4 followed these three steps with the barest minimum of code,

binding the query results to a GridView object:

GridView1.DataSource = myCommand.ExecuteReader();

GridView1.DataBind();

Calling DataBind() seems straightforward, but there’s one catch: on what object? Every

Web control implements this interface because it must as a derivative of its parent class,

System.Web.UI.Control. A call to DataBind() on a Web control will also call DataBind() on any

Web controls contained within it. So, you could call it on a Label, and just that particular

binding would occur. On the other hand, you could call Page.DataBind(), and the command

would also filter down to every Web control on the page.

You need to also consider a second issue here. Should a page rebind to a data source each

time a page posts back? Consider a page containing a lot of Web controls populated by binding

RadioButtonList controls, CheckBox controls, and other elements to a data source with the even-

tual aim to update the user’s answers back to the database. You don’t need to bind the Web

controls to the data source more than once, because its purpose is purely to set up the page,

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 191

not to record the answers given to it. It would be a huge waste of resources to rebind the data

every time the page was posted back to the Web server, especially if the page were complex.

It would also lose the values the user had entered onto the page if it were posted back, because the

rebinding would write over them. This is obviously not ideal. We’ll look at how to manage

when the data binding occurs in this chapter’s examples.

Data Binding and the SqlDataSource

In Chapter 3, you used a SqlDataSource to populate both a DropDownList with the list of

Manufacturers in the database and a GridView with a filtered list of Players. The one thing you

didn’t do was write any code to access the database. You used the following process to add a

data-bound Web control using a SqlDataSource:

1. Add a SqlDataSource to the page.

2. Add a data-aware Web control to the page.

3. Associate the SqlDataSource with the data-aware Web control using the DataSourceID

property.

You’ll notice that you do not make an explicit call to DataBind(), as you do when you write

code to access the database. So how is the data binding done? Automatic data binding occurs,

with a call to DataBind() on the Web control, after the OnPreRender event and before the

OnPreRenderComplete event in the page life cycle.

Although the DataBind() method is called automatically when using a SqlDataSource, that

doesn’t mean that you can’t call DataBind() on the Web control to force the data binding to

occur if necessary.

Data-Aware Web Controls

All three data-binding techniques—inline binding, list binding, and table binding—apply only

to Web controls because the whole process takes place on the server before the page is sent to

the client. Technically speaking, every Web control must understand how to bind data to its

properties, because it inherits the DataBind() method as something it must implement from its

parent System.Web.UI.Control class. At the least, this means that every Web control understands

inline binding and can set its properties to values from a database. Some Web controls also

know how to bind lists and tables of data into their structure.

Table 6-1 shows which groups of Web controls support which type of binding.

■Note Table 6-1 doesn’t list any Web controls derived from System.Web.UI.HtmlControl. You can use

HtmlControl-derived Web controls for inline binding but, in all cases, there is a WebControl equivalent

that you should use instead.

192 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

As you can see in Table 6-1, a lot of the Web controls allow only inline binding, which is the

same for all Web controls. With more than 70 Web controls, it may seem that only a few support

list and table binding. But these Web controls are pretty powerful, and you’ll be surprised at

what you can actually do with them.

Associating Data to the Web Control

The following sections contain three questions to ponder:

• How much data do you need to pull from your data source?

• Which object do you stream it into?

• How do you associate it to a Web control?

Table 6-1. Web Controls and the Data Binding They Support

Control Type Control Names Binding

Supported

Text-based controls HyperLink, Label, Literal, Localize, Xml Inline

Form items Button, CheckBox, FileUpload, HiddenField,
ImageButton, LinkButton, RadioButton, TextBox

Inline

Form lists BulletedList, CheckBoxList, DropDownList,
ListBox, RadioButtonList

Inline, list

Images and spaces AdRotator, Image, ImageMap, Panel, PlaceHolder Inline

Tabular Calendar, Table, TableCell, TableFooterRow,
TableHeaderCell, TableHeaderRow, TableRow

Inline

Validation CompareValidator, CustomValidator,
RangeValidator, RegularExpressionValidator,
RequiredFieldValidator, ValidationSummary

Inline

Data-aware controls DataGrid, DataList, DetailsView, FormView,
GridView, Menu, Repeater, SiteMapPath, TreeView

Inline, list, table

Master page controls Content, ContentPlaceHolder Inline

Profile controls ChangePassword, CreateUserWizard, Login,
LoginName, LoginStatus, LoginView,
PasswordRecovery

Inline

Wizard controls CompleteWizardStep, CreateUserWizardStep,
MultiView, TemplateWizardStep, View, Wizard,
WizardStep

Inline

Web part catalog controls DeclarativeCatalogPart, ImportCatalogPart,
PageCatalogPart

Inline

Web part editor controls AppearanceEditorPart, BehaviorEditorPart,
LayoutEditorPart, PropertyGridEditorPart

Inline

Web part part controls ErrorWebPart, UnauthorizedWebPart Inline

Web part zone controls CatalogZone, ConnectionsZone, EditorZone Inline

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 193

How Much Data Do You Need?

You’ve already learned that you can use the SELECT query to query for as much or as little data

as is required for binding to the Web controls on your page. It makes sense to query only for

what you need.

For example, inline binding requires you to identify individual columns to take values from, so

why take a whole table’s worth? Depending on the object you’re sourcing the data from (see the

next section), it may not matter if it contains several rows of data, because you can specify

which row and column to use. As you know, however, the DataReader presents only a row at a

time, so you may want to query only for a specific row of data with a query such as the following:

SELECT UserCategory, PreferredColorScheme, ConnectionSpeed

FROM UserPreference

WHERE UserName = 'Damien Foggon'

In a similar vein, if you’re interested in list binding, you need to present the Web control

with a set of rows in the order you want to display them. Each row needs to contain only two

columns: one that represents the text for items in the list and one that provides the values for

items that will be passed on when selected by a user. So, for example, when you displayed the

list of Manufacturers in Chapters 3 and 4, you returned only the two columns you needed from

the database: the ManufacturerName column to display to the user and the ManufacturerID to

make a note of the selections:

SELECT ManufacturerID, ManufacturerName

FROM Manufacturer

ORDER BY ManufacturerName

In the case of table binding, you can retrieve more data, but try to restrict your query to just

what you need. It’s possible to hide columns in a GridView, but why bother if you don’t need

the column in the first place? Don’t forget that there’s no reason a GridView or similar Web

control can’t be bound to a query whose results contain only one or two columns.

Which Object Should You Use?

Although we’re restricting our discussion to the DataReader, DataSet, and SqlDataSource, it’s

worth noting that you can use many other objects as the source of the data to which you’re

binding a Web control. For list and table binding, you can use any class that implements the

IEnumerable interface. Some examples of classes that support the IEnumerable interface and

can be used for list and table binding are as follows:

• ArrayList objects

• Collections (any class that implements the ICollection interface)

• DataRow objects

• DataTable objects

• DataView objects

194 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

If you’re inline binding a single value to a Web control property, you can use practically

any other single value from any other object available to you, as long as you know the syntax to

get the value from the object.

How Do You Create the Association?

The step to create the association comes before the call DataBind() is made (whether in code

or automatically in the case of the SqlDataSource), and as such, means that a Web control or

property can’t be bound to data based on the values bound into some other Web control—not

unless you’re using a postback in the page to react to choices made by the user.

Inline binding is quite different from list or table binding at this stage, because you must

associate the property with the column that will fill it in the HTML markup of the page, rather

than the code. For those of you who have worked with classic ASP, inline binding is reminiscent of

the way you inserted ASP code into pages.

Let’s say you wanted to bind the Text property of a Label. You would use the following in

the page:

<asp:Label id="Label1" runat="server" text="<%# expression %>">

The expression in the text must identify the source for the value you want bound to the

Text property and must be surrounded by <%# ... %> tags.

In contrast, list and table binding can be set up in both the code and the HTML markup of

the page. For both, you need to set the DataSource or DataSourceID property for the Web control

you’re binding to the data source. If you’re binding to a Web list control, you also need to set its

DataValueField and DataTextField properties to the columns in your queried data.

■Note Inline binding is one of those things that you’ll either love or you’ll hate. Personally, it’s something

that I never do. ASP.NET was supposed to free us from the problems of spaghetti code, but using inline binding

makes the code look like a plate of pasta. As you’ll see after the Inline Binding section, you can accomplish the

same task without relying on data binding.

Inline Binding
Although inline binding data from a DataSet may be more common, the technique is no less

valid against a DataReader. In the next two examples, you’ll try both approaches.

■Note Although a SqlDataSource performs essentially the same function as a DataReader or DataSet,

you can’t use the SqlDataSource for inline binding. The SqlDataSource can be used only in list and table

binding.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 195

Try It Out: Inline Binding to a DataReader

In this example, you’ll mimic the results from the “Try it Out: Iterating through a DataReader”

section in the previous chapter and print the details of a single Manufacturer in your sample

database. Rather than use a single Web control to present the results, you’ll use two Label

controls and two HyperLink controls to echo the results.

1. In Visual Web Developer, create a new Web site at C:\BAND\Chapter06 and delete the

auto-generated Default.aspx file.

2. Add a new Web.config file to the Web site and add a new setting to the <connectionStrings

/> element:

<add name="SqlConnectionString"

 connectionString="Data Source=localhost\BAND;Initial Catalog=BAND;

 Persist Security Info=True;User ID=band;Password=letmein"

 providerName="System.Data.SqlClient" />

3. Add a new Web Form called Inline_DataReader.aspx to the Web site.

4. In the Source view, find the <title> tag within the HTML at the bottom of the page and

change the page title to Inline Binding to a DataReader.

5. In the Design view, add two Label controls to the page. Name the first lblName and the

second lblCountry. Now add two HyperLink controls onto the page. Name them lnkEmail

and lnkWebsite. Finally, add one more Label called lblError to house any error messages

should something untoward happen (oh, the horror!). Now clear the Text properties for

all five Web controls. With a bit of added text (Country, Email, and Website), your page

should look something Figure 6-1.

Figure 6-1. Basic layout for Inline_DataReader.aspx

6. In the Source view, make sure you’ve included the correct data provider at the top of

the page.

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data.SqlClient" %>

196 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

7. You need to set up a DataReader to query for Manufacturer details and add your

standard code for database access.

// must declare the DataReader globally; else the page can't see it.

SqlDataReader myReader;

protected void Page_Load(object sender, EventArgs e)

{

 // set up connection string and SQL query

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 string CommandText = "SELECT ManufacturerName, ManufacturerCountry, ➥

 ManufacturerEmail, ManufacturerWebsite FROM Manufacturer ➥

 WHERE ManufacturerID = 1";

 // create SqlConnection and SqlCommand objects

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 SqlCommand myCommand = new SqlCommand(CommandText, myConnection);

 // use try finally clauses when the connection is open.

 try

 {

 // open the database connection

 myConnection.Open();

 // run query

 myReader = myCommand.ExecuteReader();

 if (myReader.Read())

 {

 // Process results here.

 }

 else

 {

 // show the error

 lblError.Text = "No results to databind to.";

 }

 // close the reader

 myReader.Close();

 }

 finally

 {

 // always close the database connection

 myConnection.Close();

 }

}

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 197

8. Now you need to set which data should be bound and to what. Scroll to the bottom of

the Source view and find the <body> tag in the HTML. Modify the HTML so that it’s as

follows (the changed parts are shown in bold):

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblName" runat="server">

 Name: <%# DataBinder.Eval (myReader, "[ManufacturerName]") %>

 </asp:Label>

 Country:

 <asp:Label ID="lblCountry" runat="server"

 Text='<%# DataBinder.Eval (myReader, "[ManufacturerCountry]") %>'>

 </asp:Label>

 Contact:

 <asp:HyperLink ID="lnkEmail" runat="server"

 NavigateUrl='mailto:<%# DataBinder.Eval (myReader, "[2]") %>'

 Text='<%# DataBinder.Eval (myReader, "[ManufacturerEmail]") %>'>

 </asp:HyperLink>

 Website:

 <asp:HyperLink ID="lnkWebsite" runat="server"

 NavigateUrl='<%# DataBinder.Eval (myReader, "[3]") %>'>

 <%# DataBinder.Eval (myReader, "[ManufacturerWebsite]") %>

 </asp:HyperLink>

 <asp:Label ID="lblError" runat="server"></asp:Label>

 </div>

 </form>

</body>

9. You’ve added the data-aware Web controls to the page and associated them with the

required data retrieved from the database. All that’s left to do is call DataBind(). Scroll

back to the <script> block at the start of the page and modify the Page_Load event

as follows:

if (myReader.Read())

{

 // bind the data

 Page.DataBind();

}

else

{

 // show the error

 lblError.Text="No results to databind to.";

}

198 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

10. Save the code, and then view the page in a browser. When the page loads, all appears to

be well, but is it? Move your cursor over the e-mail link, as shown in Figure 6-2, and

you’ll see that the link isn’t mailto: lackey@apple.com. You’ll have to change it.

Figure 6-2. All is not well with this link.

11. To fix the problem, you need to use a different version of the DataBinder.Eval() method.

An overloaded version takes a format string as its third parameter, so you can alter the

NavigateUrl property of lnkEmail to be as follows:

NavigateUrl='<%# DataBinder.Eval (myReader, "[2]", "mailto:{0}") %>'

12. You’ve solved the problem. Save the file, and then test the code again. You’ll see that the

link now works, as shown in Figure 6-3.

Figure 6-3. Inline binding to a DataReader

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 199

How It Works

The aim of the page is to display a Manufacturer’s details, just as you did in the example in

Chapter 5. However, here you limited your results to just a single Manufacturer (displaying a

list of Manufacturers would imply list binding, which we’ll cover later in this chapter):

SELECT ManufacturerName, ManufacturerCountry,

 ManufacturerEmail, ManufacturerWebsite

FROM Manufacturer

WHERE ManufacturerID = 1

Let’s see how what you’ve done follows the three-step process for data binding outlined

earlier.

Adding Data-Aware Web Controls

The first step is to add some Web controls to the page. Here, you added a Web control for each

detail in the database. That way, you can experiment a bit with combinations of text and bound

data to see what works and what doesn’t.

Associating the Columns of Data to the Web Controls

The second step is to associate the columns of data to the Web controls. For the first Label, lblName,

you’ve mixed the binding expression with the text value of the Web control’s tag. In the expression

itself, you call DataBinder.Eval(), which is a static method and thus always available.

<asp:Label id="lblName" runat="server">

 Name: <%# DataBinder.Eval (myReader, "[ManufacturerName]") %>

</asp:Label>

This requires two arguments: the name of the data source object (myReader) and a string

stating from which column to take the value. Because you’re using a DataReader, you can refer-

ence the column using either the name of the column or its index value in the row. You use the

column name here, because it makes it a little easier to see what you’re actually binding to the

Web control.

■Tip Using the name of the column, rather than its index, when data binding reduces the chances of errors

that can sometimes be difficult to spot. If you’re accessing columns by index and the columns in the SELECT

query change, the indexes may no longer be valid, and you could swap two columns around that shouldn’t be

swapped. When you use the name of the column, as long as the column is still returned by the SELECT query,

changing the columns that are returned won’t cause any problems.

In the second Label, lblCountry, you’re binding a value to the Text property. Of course,

this amounts to the same thing, but it does show that you can bind to both a property and a value.

<asp:Label ID="lblCountry" runat="server"

 Text='<%# DataBinder.Eval (myReader, "[ManufacturerCountry]") %>'>

</asp:Label>

200 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

■Caution You must use double quotes around the second parameter of DataBinder.Eval() and therefore

single quotes around the binding expression as a whole. This is because ASP.NET associates single quotes with

single-character values, not strings, and it will throw an error when it tries to parse [ManufacturerCountry]

as a single character. HTML, on the other hand, isn’t as picky about quotes, as long as they’re paired correctly.

In the third Label, lnkEmail, you’ve attempted to bind to two properties, NavigateUrl and

Text. However, you encountered the problem that hyperlinks require e-mail addresses to be

prefixed with mailto: for them to be recognized as e-mail addresses rather than Web site

addresses by the browser. Thus, you tried to concatenate text and binding expression inside

the Web control’s attribute, like so:

NavigateUrl='mailto: <%# DataBinder.Eval (myReader, "[2]") %>'

This doesn’t work, because you can’t mix the two inside a Web control’s property. As soon

as you do, ASP.NET regards the binding expression as literal text instead of as a placeholder for

data. Also, you have no way to alter the value of the column in the DataReader. But it is possible

to format the value of the column as it’s being bound to the Web control using an alternate

version of DataBinder.Eval(). You just pass it the format string mailto:{0} as its third param-

eter, and DataBinder.Eval() will retrieve the column from the DataReader, substitute it for the

placeholder {0}, and assign the newly formatted string to the property:

<asp:HyperLink ID="lnkEmail" runat="server"

 NavigateUrl='mailto: <%# DataBinder.Eval (myReader, "[2]") %>'

 Text='<%# DataBinder.Eval (myReader, "[ManufacturerEmail]") %>'>

</asp:HyperLink>

Also notice that you’ve used both methods of referring to a column here. The column

index is used by NavigateUrl, and the column name is used by the Text property. As noted earlier,

these are interchangeable and, at least with the SELECT query as it stands at the moment, both

refer to the same column within the row.

Finally, the fourth Label on the page demonstrates that you can bind to both the properties

and the text value of a Web control at the same time:

<asp:HyperLink ID="lnkWebsite" runat="server"

 NavigateUrl='<%# DataBinder.Eval (myReader, "[3]") %>'>

 <%# DataBinder.Eval (myReader, "[ManufacturerWebsite]") %>

</asp:HyperLink>

Calling DataBind() on the Page

With all the placeholders for the data set up, it’s just a matter of creating the DataReader,

accessing the first row (you still have to call Read() or else there’s nothing to bind to), and

calling DataBind():

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 201

// run query

myReader = myCommand.ExecuteReader();

if (myReader.Read())

{

 Page.DataBind();

}

else

{

 lblError.Text="No results to databind to.";

}

// close the reader

myReader.Close();

Notice that you’ve called DataBind() on the whole page rather than the individual Web

controls. If you comment out this call, nothing at all will get set. As a slight extension of this

example, try experimenting with binding individual Web controls just to prove that binding to

one label won’t affect the others unless they, too, are explicitly bound. Perhaps create a Panel

that contains some of the Web controls and call DataBind() on that to prove that it’s not just the

DataBind() method in the Page that filters down to its children.

Try It Out: Inline Binding to a DataSet

Inline binding to values stored in a DataSet works in much the same way as the previous example

with a DataReader. The main difference is that the binding expression is slightly different to

accommodate the syntax used to identify tables, rows, and columns inside a DataSet. To see

it in action, you’ll adapt the previous example to do the same job using a DataSet instead of

a DataReader.

1. In Visual Web Developer open Inline_DataReader.aspx and resave it as Inline_DataSet.

aspx. Change the <title> tag of the page to be Inline Binding to a DataSet.

2. Add the System.Data Import statement to the top of the page:

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqlClient" %>

3. Switch to the Source view. Rather than a DataReader, you need to alter Page_Load to use

a DataSet. You’ll use the same basic code you saw in Chapter 5, as follows (the changed

lines are shown in bold):

202 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

// must declare the DataSet globally; else the page can't see it.

DataSet myDataSet = new DataSet();

void Page_Load(object sender, EventArgs e)

{

 // set up connection string and SQL query

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 string CommandText = "SELECT ManufacturerName, ManufacturerCountry, ➥

 ManufacturerEmail, ManufacturerWebsite FROM Manufacturer";

 // create SqlConnection and SqlCommand objects

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 SqlCommand myCommand = new SqlCommand(CommandText, myConnection);

 // create a new DataAdapter

 SqlDataAdapter myAdapter = new SqlDataAdapter();

 myAdapter.SelectCommand = myCommand;

 // use try finally clauses when the connection is open.

 try

 {

 // open the database connection

 myConnection.Open();

 // use the DataAdapter to fill the DataSet

 myAdapter.Fill(myDataSet, "Manufacturer");

 }

 finally

 {

 // always close the database connection

 myConnection.Close();

 }

 // bind the data

 Page.DataBind();

}

4. Now you set which property is bound to which column in the DataTable. Scroll to the

bottom of the page to the <body> tag, and change the HTML to the following:

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblName" runat="server">

 Name: DataBinder.Eval (myDataSet.Tables["Manufacturer"].Rows[0],

 "[ManufacturerName]")

 </asp:Label>

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 203

 Country:

 <asp:Label ID="lblCountry" runat="server"

 Text='<%# DataBinder.Eval

 (myDataSet.Tables["Manufacturer"].Rows[0],

 "[ManufacturerCountry]") %>'>

 </asp:Label>

 Contact:

 <asp:HyperLink ID="lnkEmail" runat="server"

 NavigateUrl='mailto: <%# DataBinder.Eval(

 myDataSet.Tables["Manufacturer"].Rows[0],"[2]","mailto:{0}") %>'

 Text='<%# DataBinder.Eval(

 myDataSet.Tables["Manufacturer"].Rows[0],

 "[ManufacturerEmail]") %>'>

 </asp:HyperLink>

 Homesite:

 <asp:HyperLink ID="lnkWebsite" runat="server"

 NavigateUrl='<%# DataBinder.Eval(

 myDataSet.Tables["Manufacturer"].Rows[0], "[3]") %>'>

 <%# DataBinder.Eval (myDataSet.Tables["Manufacturer"].Rows[0],

 "[ManufacturerWebsite]") %>

 </asp:HyperLink>

 <asp:Label ID="lblError" runat="server"></asp:Label>

 </div>

 </form>

</body>

5. Save the page, and then view it in a browser (see Figure 6-4). The results are the same as

for binding to a DataReader, as you saw in Figure 6-3.

Figure 6-4. Inline binding to a DataSet

204 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

6. Go back to the Source view, and duplicate the Web controls and binding expressions on

the page. The ID properties will be changed automatically to default values, but you

should change them to lblName2, lblCountry2, lnkEmail2, and lnkWebsite2.

7. Change the binding expressions so that they bind to columns from a different row in

the table. This is as simple as changing the Rows index, as this example shows:

<asp:Label ID="lblName2" runat="server">

 Name: DataBinder.Eval (myDataSet.Tables["Manufacturer"].Rows[4],

 "[ManufacturerName]")

</asp:Label>

Country:

 <asp:Label ID="lblCountry2" runat="server"

 Text='<%# DataBinder.Eval

 (myDataSet.Tables["Manufacturer"].Rows[4],

 "[ManufacturerCountry]") %>'>

</asp:Label>

8. Save the page, and then view it again (see Figure 6-5). You’ll see that the DataTable has

no problem. The DataReader would, of course, choke on this. The only way to work at

random with a table with a DataReader is to keep rebuilding it.

Figure 6-5. The DataSet gives you random access through a table.

How It Works

Only two major differences exist between this and the previous example. The first is that you’re

using a DataSet containing a DataTable to provide the data to bind to, and the second is the

syntax you use in the binding expressions. Everything else is the same, demonstrating that

there’s no limit to inline binding text and properties at the same time.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 205

This example may seem to contradict my earlier advice to query only for what you’ll use in

a page. You queried only the same four columns, but all of the rows from the Manufacturer

table, like so:

SELECT ManufacturerName, ManufacturerCountry,

 ManufacturerEmail, ManufacturerWebsite

FROM Manufacturer

However, you did this to demonstrate a point: unlike with a DataReader, you can work

backward in the DataSet as well as forward.

Inside the binding expressions, you should recognize the slightly unwieldy syntax by now.

Each expression identifies a column in a DataSet unambiguously. The second parameter of a

call to DataBinder.Eval() names the specific column, and the first identifies the specific row

that contains the column. If you recall from the previous example, the call when binding to a

column in DataReader looked like this:

Name: <%# DataBinder.Eval (myReader, "[ManufacturerName]") %>

You can do this because a DataReader contains only one row at a time. It’s therefore

enough to identify the reader and then the position of the column in that row.

If you’re using a DataSet, you need to use a call like this:

Name: <%# DataBinder.Eval (myDataSet.Tables["Manufacturer"].Rows[0],

 "[ManufacturerName]") %>

This slightly unwieldy syntax is required because you must first identify the DataSet, then

the DataTable within it, and the specific row within that in one go, so that the second parameter

can name the column in that row. You still have no way to alter the actual value of the column

because it’s bound to the Web control. However, if you need to format the value of the column,

you just add the format string as the third parameter of the call to DataBinder.Eval():

NavigateUrl='<%# DataBinder.Eval

 (myDataSet.Tables["Manufacturer"].Rows[4], "[2]", "mailto:{0}") %>'

The Inline Binding Alternative
I mentioned earlier that you have other options to inline binding, and that I prefer to avoid

inline binding. But why not use data binding?

The main reason that you wouldn’t want to use inline binding is performance. Inline

binding uses reflection to determine what you’re trying to show, and this is slower than using

the DataReader and DataSet directly.

Another reason to avoid inline binding is code maintenance. If you use inline binding,

you’re mixing real code with the HTML using <% and %>. Those of you who’ve written ASP code

in the past will remember doing this, with the result being the most horrible spaghetti code

imaginable that was an absolute nightmare to debug. ASP.NET was supposed to fix all the

problems with ASP, and yet here’s one area where we have not moved forward.

Now, let’s take a look at how you can show the results from a database query without

resorting to data binding.

206 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

Try It Out: Showing Data from a DataReader

In this example, you’ll display the same data from the DataReader without relying on inline

binding. You’ll build essentially the same pages as you’ve already seen, but without a call to

DataBind() in sight.

1. Open Inline_DataReader.aspx and save it as Showing_DataReader.aspx.

2. In the Source view, scroll to the bottom of the page and change the <title> of the page

to Showing from a DataReader.

3. Remove all the data-binding tags from within the <body> element. You should have

HTML that looks similar to the following:

<body>

 <form id="form1" runat="server">

 <div>

 Name:

 <asp:Label ID="lblName" runat="server"></asp:Label>

 Country:

 <asp:Label ID="lblCountry" runat="server"></asp:Label>

 Email:

 <asp:HyperLink ID="lnkEmail" runat="server"></asp:HyperLink>

 Website:

 <asp:HyperLink ID="lnkWebsite" runat="server"></asp:HyperLink>

 <asp:Label ID="lblError" runat="server"></asp:Label>

 </div>

 </form>

</body>

4. Within the code for the page, remove the global SqlDataReader definition and change

the code within the Page_Load event to the following (the changed code is shown in bold):

// run query

SqlDataReader myReader = myCommand.ExecuteReader();

if (myReader.Read())

{

 // set the properties on the controls

 lblName.Text = Convert.ToString(myReader["ManufacturerName"]);

 lblCountry.Text = Convert.ToString(myReader["ManufacturerCountry"]);

 lnkEmail.Text = Convert.ToString(myReader["ManufacturerEmail"]);

 lnkEmail.NavigateUrl = "mailto:" +

 Convert.ToString(myReader["ManufacturerEmail"]);

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 207

 lnkWebsite.Text = Convert.ToString(myReader["ManufacturerWebsite"]);

 lnkWebsite.NavigateUrl =

 Convert.ToString(myReader["ManufacturerWebsite"]);

}

else

{

 // show the error

 lblError.Text="No results to databind to.";

}

5. Save the page, and then view it in a browser (see Figure 6-6). The results are the same as

for binding to a DataReader (Figure 6-3).

Figure 6-6. Showing from a DataReader without binding

How It Works

In this example, you changed quite a lot around compared to the corresponding inline binding

exercise. The benefit is that these changes have made the split between what is code and what

is presentation a lot easier to see.

The first change is to remove any data-binding code from the HTML. Here’s how you

created the Label controls in the data-binding example:

<asp:Label ID="lblName" runat="server">

 Name: <%# DataBinder.Eval (myReader, "[ManufacturerName]") %>

</asp:Label>

Country:

<asp:Label ID="lblCountry" runat="server"

 Text='<%# DataBinder.Eval (myReader, "[ManufacturerCountry]") %>'>

</asp:Label>

208 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

Compare this to what you have now:

Name:

<asp:Label ID="lblName" runat="server"></asp:Label>

Country:

<asp:Label ID="lblCountry" runat="server"></asp:Label>

It certainly makes the HTML a lot easier to follow, now that no data-binding code is

mingled among the HTML.

You also now need to set the properties in code. You need to move the data binding from

the DataBinder.Eval() calls within the HTML to the code. And you do this by replacing the

Page.DataBind() with code that sets the properties directly on the four Web controls:

// set the properties on the controls

lblName.Text = Convert.ToString(myReader["ManufacturerName"]);

lblCountry.Text = Convert.ToString(myReader["ManufacturerCountry"]);

lnkEmail.Text = Convert.ToString(myReader["ManufacturerEmail"]);

lnkEmail.NavigateUrl = "mailto:" +

 Convert.ToString(myReader["ManufacturerEmail"]);

lnkWebsite.Text = Convert.ToString(myReader["ManufacturerWebsite"]);

lnkWebsite.NavigateUrl =

 Convert.ToString(myReader["ManufacturerWebsite"]);

You return the column you’re after from the current row in the DataReader by passing the

column name as the index to the myReader object. This returns the column contents as an Object,

and this is cast to the correct type, in this case a String, before the properties on the Web controls

are set.

The only change to the way that you set the properties is the NavigateUrl property of the

e-mail link. You need to prepend the e-mail address with mailto: to ensure that it appears in

the browser correctly. You can do this easily by setting NavigateUrl to the concatenation of the

two strings.

Try It Out: Showing Data from a DataSet

As well as querying a DataReader directly, it is also possible to query a DataSet directly. This

example will show how you can query the DataSet to return the correct data and use this to set

properties on the Web controls on the page.

1. Open Inline_Binding_DataSet.aspx and save it as Showing_DataSet.aspx.

2. Change the <title> of the page to Showing from a DataSet.

3. Remove all the data-binding code from the <body> element. You should have HTML

similar to the following:

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 209

<body>

 <form id="form1" runat="server">

 <div>

 Name:

 <asp:Label ID="lblName" runat="server"></asp:Label>

 Country:

 <asp:Label ID="lblCountry" runat="server"></asp:Label>

 Contact:

 <asp:HyperLink ID="lnkEmail" runat="server"></asp:HyperLink>

 Homesite:

 <asp:HyperLink ID="lnkWebsite" runat="server"></asp:HyperLink>

 Name:

 <asp:Label ID="lblName2" runat="server"></asp:Label>

 Country:

 <asp:Label ID="lblCountry2" runat="server"></asp:Label>

 Contact:

 <asp:HyperLink ID="lnkEmail2" runat="server"></asp:HyperLink>

 Homesite:

 <asp:HyperLink ID="lnkWebsite2" runat="server"></asp:HyperLink>

 <asp:Label ID="lblError" runat="server"></asp:Label>

 </div>

 </form>

</body>

4. Within the code for the page, remove the global DataSet definition and move it to the

Page_Load event, as follows:

// create a new DataAdapter

SqlDataAdapter myAdapter = new SqlDataAdapter();

myAdapter.SelectCommand = myCommand;

// create the DataSet

DataSet myDataSet = new DataSet();

// use try finally clauses when the connection is open.

try

210 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

5. Replace the Page.DataBind() call at the end of the Page_Load event with the following:

// show the first results

DataRow myFirstRow = myDataSet.Tables["Manufacturer"].Rows[0];

lblName.Text = Convert.ToString(myFirstRow["ManufacturerName"]);

lblCountry.Text = Convert.ToString(myFirstRow["ManufacturerCountry"]);

lnkEmail.Text = Convert.ToString(myFirstRow["ManufacturerEmail"]);

lnkEmail.NavigateUrl = "mailto:" +

 Convert.ToString(myFirstRow["ManufacturerEmail"]);

lnkWebsite.Text = Convert.ToString(myFirstRow["ManufacturerWebsite"]);

lnkWebsite.NavigateUrl =

 Convert.ToString(myFirstRow["ManufacturerWebsite"]);

// show the second results

DataRow mySecondRow = myDataSet.Tables["Manufacturer"].Rows[4];

lblName2.Text = Convert.ToString(mySecondRow["ManufacturerName"]);

lblCountry2.Text = Convert.ToString(mySecondRow["ManufacturerCountry"]);

lnkEmail2.Text = Convert.ToString(mySecondRow["ManufacturerEmail"]);

lnkEmail2.NavigateUrl = "mailto:" +

 Convert.ToString(mySecondRow["ManufacturerEmail"]);

lnkWebsite2.Text = Convert.ToString(mySecondRow["ManufacturerWebsite"]);

lnkWebsite2.NavigateUrl =

 Convert.ToString(mySecondRow["ManufacturerWebsite"]);

6. Save the page, and then view it in a browser (see Figure 6-7). The results are the same as

for binding to a DataSet (Figure 6-5).

Figure 6-7. Showing from a DataSet without binding

How It Works

As with the DataReader example, you’ve removed the code from the HTML and placed it where

it should be: within the code part of the page.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 211

As you’ve already seen, when dealing with a DataSet, the first thing you need is a reference

to the correct row within the correct table of the DataSet. Rather than having to repeat a rather

unwieldy syntax every time you need to access the row, you store a reference to the row:

DataRow myFirstRow = myDataSet.Tables["Manufacturer"].Rows[0];

So, whenever you need to retrieve a column from the row, you can do so relatively easily.

One of the indexes for a DataRow is the name of the column that you’re after, so the syntax is

remarkably similar to that for the DataReader earlier:

lblName.Text = Convert.ToString(myFirstRow["ManufacturerName"]);

After showing the data for the first row in the DataTable, you then repeat the process, but

this time, show the details for the fifth row by getting a reference to a different row in the table:

DataRow myFirstRow = myDataSet.Tables["Manufacturer"].Rows[4];

List Binding
In comparison to inline binding, list binding is a somewhat less complex way to pass data into

a data-bound Web control, but usually it requires more work beyond the call to DataBind() to

finesse your Web control into a useful piece of the page for the user. If you consider the four

Web controls you can list-bind to—the CheckBoxList, RadioButtonList, DropDownList, and

ListBox—you can see that their purpose is to elicit a response from the user for information to

be used elsewhere in the page.

■Note There is a fifth Web list control, the BulletedList, which is more of a display-only Web control

and doesn’t allow the user to select options from the list. Even though we’re not going to look at it here, the

method for populating the Web control is the same as for the other four Web controls.

As you know from using these Web controls and working with HTML option lists, the key

to finding out what the user has chosen is to establish a unique value for each option that can

be retrieved from the page once the choice has been made. And, of course, you also need some

text to display against each choice. In HTML, that means something like this:

<select name="ListBox1" size="5" id="ListBox1">

 <option value="1">Apple</option>

 <option value="2">Creative</option>

 <option value="3">iRiver</option>

 <option value="4">MSI</option>

 <option value="5">Rio</option>

</select>

On the screen, it looks something like Figure 6-8.

212 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

Figure 6-8. You can build a simple check box by list binding.

Apple, Creative, iRiver, and so on are displayed in the browser, and the choice registers in

the page as 1, 2, 3, and so on. When you’re list binding to a Web control, you need to establish

a data source containing two columns per row: one for the text to be displayed and the other to

identify the choice the user has made. Here’s an example:

SELECT ManufacturerID, ManufacturerName FROM Manufacturer

With the data source established (either by setting the DataSource or DataSourceID property,

in code or in the HTML markup of the Web control), you need to tell the Web control which

column does what. You do this by setting the DataTextField and DataValueField properties as

appropriate. You can do this either in HTML:

<asp:RadioButtonList id="RadioButtonList1" runat="server"

 DataTextField="ManufacturerName" DataValueField="ManufacturerID" />

or in code:

RadioButtonList1.DataTextField = "ManufacturerName";

RadioButtonList1.DataValueField = "ManufacturerID";

■Caution If you do set the DataTextField and DataValueField properties in code, make sure you

specify the data source before the other two properties, or you’ll get an error.

The Web list controls have the following two relevant properties:

• DataMember: This property is for use with a DataSet, as you’ll see in the example in the

upcoming “Try It Out: Using Lookup Lists and Events with a DataSet” section. As a

DataSet can contain multiple tables, this property is used to specify which table to use

from the DataSet.

• DataTextFormatString: This property lets you set the format for the text displayed in the

list and comes in handy when you’re dealing with currency, dates, and numbers. See

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listcontrol.

datatextformatstring.aspx for examples.

Once the Web list control has been configured correctly, it’s time to actually perform the

data binding. Using a SqlDataSource, the data binding takes place automatically. If you’re

using a DataSet or a DataReader as the data source, or you need the data binding to occur at a

specific place in code, then all that’s left to do is call DataBind() on the Web list control.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 213

So, the core code for the whole three-stage binding process could be as simple as the

following:

myConnection.Open();

myReader = myCommand.ExecuteReader();

RadioButtonList1.DataSource = myReader;

RadioButtonList1.DataTextField = "ManufacturerName";

RadioButtonList1.DataValueField = "ManufacturerID";

RadioButtonList1.DataBind();

myReader.Close();

myConnection.Close();

This is true of all four Web list controls.

Another thing that you’ll soon discover is that you can use a DataReader as a Web list

control’s data source only on a one-to-one basis. Unlike inline binding, where you can bind

many properties to the same column in a DataReader, you can’t bind many Web list controls

to the same columns in a DataReader. Actually, you can’t bind more than one Web list control

to the same DataReader. Once DataBind() has been called on one of the Web list controls, it

works through all the rows in a DataReader, which, of course, is forward-only, so you can’t go

back to the beginning and bind the same information. The only way to bind all three Web

controls from the same source is to use something other than a DataReader—a DataSet, for

example—as the data source.

That said, you’ll now look at a common application of data-bound lists: using the selection

from a list to look up data from another table. First, you’ll see how to do this using a DataReader

as the source of the list to populate a GridView based on the user’s selection from a DropDownList,

a RadioButtonList, or a ListBox.

You can accomplish the same task using a DataSet instead of a DataReader, but in order to

do that, you need to start dealing with events. So, first we’ll look at the two relevant events,

DataBound and SelectedIndexChanged, and then we’ll extend the DataReader example before

moving on to build the corresponding page using a DataSet.

Try It Out: Using Single-Value Lookup Lists with a DataReader

In this example, you’ll build a page with two stages. In the first stage, you’ll populate a

DropDownList with information from the Manufacturer table. Specifically, you’ll make the

name of all the Manufacturers in the database appear on the screen and use their respective

ManufacturerID values to track which Manufacturer has been clicked. The DropDownList allows

only one value to be selected in the list, and in the second stage, you’ll use the ManufacturerID of

the selected Manufacturer to search the Player table for all the Players made by that Manufacturer,

and then display that in a GridView.

1. In Visual Web Developer, add a new Web Form called List_DataReader.aspx.

2. In the Source view, change the title of the page to List Binding to a DataReader.

3. In the Design view, add a DropDownList and a GridView to the page. Rather than having

the Web controls lined up underneath each other, use an HTML table to lay out the Web

controls in a more pleasing manner, as shown in Figure 6-9.

214 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

Figure 6-9. Laying out the DropDownList and GridView

4. Select the DropDownList and set its ID to lstManufacturers. Also set DataTextField to

ManufacturerName, DataValueField to ManufacturerID, and AutoPostBack to True.

5. In the Source view, make sure that you’ve included the correct data provider at the top

of the page, like so:

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data.SqlClient" %>

6. All the code for the page is in the Page_Load event handler. It begins by setting up the

Connection and Command objects, like so:

protected void Page_Load(object sender, EventArgs e)

{

 // create SqlConnection object

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 // create SqlCommand object

 SqlCommand myCommand = new SqlCommand();

 myCommand.Connection = myConnection;

 try

 {

 // open the database connection

 myConnection.Open();

7. Inside the try loop, you need to run two different queries: one for setting up the

DropDownList and the other for the GridView. To set up the DropDownList, add the

following code:

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 215

 if (Page.IsPostBack == false)

 {

 // If this page isn't posted back

 // you need to set up the list control

 // set up SQL query for the Manufacturer table

 myCommand.CommandText =

 "SELECT ManufacturerID, ManufacturerName FROM Manufacturer";

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the list

 lstManufacturers.DataSource = myReader;

 lstManufacturers.DataBind();

 // close the reader

 myReader.Close();

 }

8. To set up the GridView, you need the following code. Again, you’re using only the

DropDownList, so the calls against the other Web list controls are commented out.

 else

 {

 // If this page is posted back get the selected value and display

 // players made by manufacturer. You don't need to rebind the value

 // for the lists either. They are stored in the viewstate.

 // set up SQL query for the Player table

 myCommand.CommandText =

 "SELECT PlayerID, PlayerName, PlayerManufacturerID, PlayerCost, ➥

 PlayerStorage FROM Player WHERE PlayerManufacturerID = " +

 lstManufacturers.SelectedItem.Value;

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // setup the GridView

 GridView1.DataSource = myReader;

 GridView1.DataBind();

 // close the reader

 myReader.Close();

 }

216 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

9. And last but not least, you need to tidy things up, like so:

 }

 finally

 {

 // always close the connection

 myConnection.Close();

 }

}

10. Save the page, and then view it in a browser. Select one of the Manufacturers from the

drop-down list. The page will post back to the server and, presto, return with the details

for the Players made by that Manufacturer, as shown in Figure 6-10.

Figure 6-10. Selecting a single value using a DropDownList

11. Now that you’ve seen how this works with a DropDownList, you can experiment with

both the RadioButtonList and ListBox to perform the same task. Switch back to Visual

Web Developer and change the <asp:DropDownList> and </asp:DropDownList> tags to

<asp:RadioButtonList> and </asp:RadioButtonList>. Save the page, and then view it in

the browser. Selecting a Manufacturer from the radio button list will post back to the

server and populate the Players automatically, as shown in Figure 6-11.

12. Switch back to Visual Web Developer and change the <asp:RadioButtonList> and

</asp:RadioButtonList> tags to <asp:ListBox> and </asp:ListBox>. Save the page, and

view it in the browser. Selecting a Manufacturer from the list box will post back to the

server and populate the Players automatically, as shown in Figure 6-12.

13. Switch back to Visual Web Developer and revert back to using a DropDownList by

changing the <asp:ListBox> and </asp:ListBox> tags to <asp:DropDownList> and

</asp:DropDownList>.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 217

Figure 6-11. Selecting a single value using a RadioButtonList

Figure 6-12. Selecting a single value using a ListBox

How It Works

We’ve discussed a great deal of this code already, but it makes a lot of difference to see it in

action. Seeing how DataTextField and DataValueField translate inside a data-bound list, for

example, is helpful.

When the page is first loaded, you need to populate the list from the database. However,

this list will never change as you use the page, so you don’t need to repopulate it each time you

click the values it contains. Consequently, you set up a simple test to check whether the page

has posted back. If it hasn’t, you’ll populate the list.

if (Page.IsPostBack == false)

{

218 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

Although the DataTextField and DataValueField properties specify what will populate the

list, there’s still no need to query the database for any more than those columns. You’re using

a DataReader, so you can’t access any extra information from it anyway once you DataBind() it

to the list.

 // set up SQL query for Manufacturer table

 myCommand.CommandText =

 "SELECT ManufacturerID, ManufacturerName FROM Manufacturer";

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the list

 lstManufacturers.DataSource = myReader;

 lstManufacturers.DataBind();

 // close the reader

 myReader.Close();

}

■Note You set the DataSource property within the code rather than the HTML (as you saw when we

looked at inline binding), as this makes the code a little more self-contained. This way, you don’t need to have

a global reference to the DataReader for the page.

You set the AutoPostBack property of the DropDownList to true, so any time you select an

option from the list, the page posts back, and you can update the GridView accordingly.

The DropDownList, and indeed all three Web list controls, expose the currently selected item

in the list through the SelectedItem property. You can use its Text and Value properties to retrieve

the exact details. In this case, you need the ManufacturerID for the Player search, so you use

SelectedItem.Value because you set ManufacturerID to DataValueField in the Web list control.

else

{

 // set up SQL query for Player table

 myCommand.CommandText =

 "SELECT PlayerID, PlayerName, PlayerManufacturerID, PlayerCost, ➥

 PlayerStorage FROM Player WHERE PlayerManufacturerID = " +

 lstManufacturers.SelectedItem.Value;

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 219

 // set up the GridView

 GridView1.DataSource = myReader;

 GridView1.DataBind();

 // close the reader

 myReader.Close();

}

An alternate way to go here would be to use the Web list control’s SelectedValue and

SelectedText properties instead of SelectedItem.Value and SelectedItem.Text. That approach

produces the same results in this scenario, where you can select only one item from the list.

However, this doesn’t work with multiple-selection lists, as you’ll see in the “Multiple-Selection

Lists” section later in this chapter. Nor can you use the SelectedItem property to find all the list

items selected in a group. You must choose another tack.

The last two steps in the example changed the Web list control from a DropDownList to a

RadioButtonList and then to a ListBox. You simply changed the HTML tags from

<asp:DropDownList> to <asp:RadioButtonList> or <asp:ListBox>. Nothing else on the page

changes—all Web list controls have exactly the same interface, and the same methods and

properties are available.

List Binding Events

In the previous example, you saw how easy it is to build a list from a DataReader. Before you

can see how to do the same thing using the DataSet and SqlDataSource, you need to be aware

of the events that are exposed by the Web list controls.

The main problem with the previous example is that there is no way to know which Web

list control the user used to cause the postback to the page. As you have only one visible Web list

control, this isn’t a problem. You can assume that if there has been a postback, the visible

Web control caused the postback, and so populate the GridView accordingly. This is exactly

what you’ve done:

if (Page.IsPostBack == false)

{

 // populate the list control

}

else

{

 // populate the GridView

}

However, when you start adding more Web controls to the page, such as a button or indeed

another Web list control that has its AutoPostBack property set to true, you have a problem.

How do you know which Web control has caused the postback? A button has a Click event, but

what about a Web list control?

Thankfully, a Web list control has its own event that is raised whenever the page is posted

back because of a user selection within the list: SelectedIndexChanged. As you’ll soon see, you

can use this event to modify other Web controls.

220 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

As well as the SelectedIndexChanged event, Web list controls have another very helpful

event. Introduced in ASP.NET 2.0, the DataBound event is fired immediately after the Web

control has been data-bound—whether this is automatic or caused by an explicit call to

DataBind() for the Web control or its parent.

Try It Out: Using Lookup Lists and Events with a DataReader

In this example, you’ll modify the previous DataReader example to use the SelectedIndexChanged

and DataBound events, rather than relying on the fact that the page has been posted back to

assume that the user has made a selection.

1. Open List_DataReader.aspx and save it as List_Binding_Events.aspx.

2. Change the <title> of the page to List Binding with Events to a DataReader.

3. In the Source view, change the Page_Load event handler to the following:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // create SqlConnection object

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 // create SqlCommand object

 SqlCommand myCommand = new SqlCommand();

 myCommand.Connection = myConnection;

 try

 {

 // open the database connection

 myConnection.Open();

 // set up SQL query for Manufacturer table

 myCommand.CommandText =

 "SELECT ManufacturerID, ManufacturerName FROM Manufacturer";

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the list

 lstManufacturers.DataSource = myReader;

 lstManufacturers.DataBind();

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 221

 // close the reader

 myReader.Close();

 }

 finally

 {

 // always close the connection

 myConnection.Close();

 }

 }

}

4. In the Design view, double-click the DropDownList. This will add the SelectedIndexChanged

event handler. Change the code within the handler to the following:

protected void lstManufacturers_SelectedIndexChanged(object sender,

 EventArgs e)

{

 // create SqlConnection object

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 // create SqlCommand object

 string CommandText = "SELECT PlayerID, PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage FROM Player WHERE PlayerManufacturerID = " +

 lstManufacturers.SelectedItem.Value;

 SqlCommand myCommand = new SqlCommand(CommandText, myConnection);

 try

 {

 // open the database connection

 myConnection.Open();

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the GridView

 GridView1.DataSource = myReader;

 GridView1.DataBind();

 // close the reader

 myReader.Close();

 }

 finally

 {

 // always close the connection

 myConnection.Close();

 }

}

222 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

5. Save the page, and then view it in the browser. Selecting one of the options will populate

the results with the Players for the selected Manufacturer, similar to the results you’ve

already seen in Figure 6-10. However, when the page is first loaded, the DropDownList is

showing Apple, but the GridView doesn’t appear!

6. Switch back to Visual Web Developer, and in the Design view, show the properties for

the DropDownList. Switch to the Events view and double-click the DataBound event to

add the event handler, as shown in Figure 6-13.

Figure 6-13. Setting the DataBound event for a DropDownList

7. Add the following code to the DataBound event:

protected void lstManufacturers_DataBound(object sender, EventArgs e)

{

 ListItem myListItem = new ListItem();

 myListItem.Text = "please select...";

 myListItem.Value = "-1";

 lstManufacturers.Items.Insert(0, myListItem);

}

8. Modify the code within the lstManufacturers_SelectedIndexChanged event handler

as follows:

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)

{

 if (lstManufacturers.SelectedValue != "-1")

 {

 // code as it stands at the moment

 }

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 223

 else

 {

 // clear the GridView

 GridView1.DataSource = null;

 GridView1.DataBind();

 }

}

9. Save the page, and then view it in the browser. This time, notice a new entry, “please

select...,” added to the DropDownList. Select one of the Manufacturers, and the Player

list changes to the selected Manufacturer’s Players. Select “please select...,” and notice

that the list of Players disappears.

10. Experiment with changing the DropDownList to a RadioButtonList and a ListBox. Notice

again that all three Web controls will have the “please select...” entry, as well as the list of

Manufacturers, and selecting an option displays the same results, regardless of the type

of Web list control that you’re using.

How It Works

The first thing that you’ll notice about this code is that the Page_Load event is no longer popu-

lating the GridView, and this is now handled by the SelectedIndexChanged event of the Web

list control.

The Page_Load event is now solely responsible for creating the list of Manufacturers for the

Web list control. As you saw in the previous example, this must be done only when the page is

first loaded, so the first thing that you check is that this is indeed the first load of the page. If it

is, you populate the Web list control in the same way as the previous example, by querying the

Manufacturer table for the ManufacturerID and ManufacturerName combinations.

Within the SelectedIndexChanged event, you first need to create a connection to the data-

base, and then create the correct SQL query to execute:

// create SqlConnection object

string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

SqlConnection myConnection = new SqlConnection(ConnectionString);

// create SqlCommand object

string CommandText = "SELECT PlayerID, PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage FROM Player WHERE PlayerManufacturerID = " +

 lstManufacturers.SelectedItem.Value;

SqlCommand myCommand = new SqlCommand(CommandText, myConnection);

The SQL query is constructed in the same way as in the previous example. You retrieve the

value selected from the drop-down list using the SelectedItem.Value property and concatenate

this with the rest of the query.

Once you have a Command object, you can run the query and pass the results to the

DataSource of the GridView and bind the results:

224 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

// run query

SqlDataReader myReader = myCommand.ExecuteReader();

// set up the GridView

GridView1.DataSource = myReader;

GridView1.DataBind();

// close the reader

myReader.Close();

The only difference from the previous example is that you’ve changed the page to respond

to a specific event, SelectedIndexChanged, to bind the Players to the GridView.

The one new piece of code that you’ve added here is the DataBound event, which you use to

add the “please select...” entry to the list.

A DropDownList always has an item selected, since it must display something, even if the user

hasn’t made a selection. When you first loaded the page Apple was the selected entry, but the list of

Players made by Apple wasn’t shown in the list. Contrast this with both the RadioButtonList and

the ListBox, which don’t have a selected item when they’re first loaded. So, you need some way

of dealing with this, which is the purpose of the “please select...” entry to the Web list control.

All additions to a Web list control must be made once any data binding has occurred. Before

ASP.NET 2.0, any additions to a Web list control had to be made after the Web list control had

been data-bound, as follows:

// data-bind the list

DropDownList1.DataBind();

// add the "please select..." entry

ListItem myListItem = new ListItem();

myListItem.Text = "please select...";

myListItem.Value = "-1";

lstManufacturers.Items.Add(myListItem);

While this works without any problems, you’re using an event-driven programming

model, and the new DataBound event can be used for this purpose:

protected void lstManufacturers_DataBound(object sender, EventArgs e)

{

 ListItem myListItem = new ListItem();

 myListItem.Text = "please select...";

 myListItem.Value = "-1";

 lstManufacturers.Items.Insert(0, myListItem);

}

Once the data binding of the Web list control is complete, the DataBound event is fired and

the new entry added to the Web list control. Either option works to do the same task, but using

the event separates the different parts of the code more cleanly and will make the code easier

to maintain later.

Obviously, you can’t use the dummy entry “please select ...” as a Manufacturer. Therefore,

you check that the selected entry is a real one when handling the SelectedIndexChanged event.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 225

You know that the ManufacturerID values in the database start at 1, so you set the dummy

entry to have a value that can’t exist, -1. If this is the value that the user has selected, you don’t

attempt to bind to a set of results from the database. Instead, you remove any data binding

already in place by telling the GridView to bind to a null data source:

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)

{

 if (DropDownList1.SelectedValue != "-1")

 {

 // code to show the players

 }

 else

 {

 // clear the GridView

 GridView1.DataSource = null;

 GridView1.DataBind();

 }

}

You’ll notice that you’ve added the dummy entry to all Web list controls that you may use,

including the RadioButtonList and ListBox, even though they can display themselves without

having an entry selected. It’s only the DropDownList that cannot and needs the dummy entry.

Therefore, you may want to remove the DataBound event handler when using a RadioButtonList

or a ListBox.

Try It Out: Using Lookup Lists and Events with a DataSet

In this exercise, you’ll see how the code for list binding a DataTable in a DataSet to a Web

control is almost identical to list binding to a DataReader.

1. Open List_DataReader_Events.aspx and save it as List_DataSet_Events.aspx.

2. Change the <title> of the page to List Binding with Events to a DataSet.

3. Add the System.Data Import statement to the top of the page:

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqlClient" %>

4. If the page is using a Web list control other than the DropDownList, change it back to a

DropDownList and, if necessary, add the DataBound event that you used in the previous

example.

5. Add a RadioButtonList to the page beneath the DropDownList. Set its DataTextField

property to ManufacturerName, DataValueField to ManufacturerID, and AutoPostBack

to True.

6. You need to populate a DataSet from three different places, so you’re going to move the

code to do so to a new method called BuildDataSet(). Add the following:

226 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

private DataSet BuildDataSet(string commandText, string tableName)

{

 // DataSet we're going to return

 DataSet myDataSet = new DataSet();

 // set up connection string

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 // create SqlConnection and SqlCommand objects

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 SqlCommand myCommand = new SqlCommand(commandText, myConnection);

 // Create the SqlDataAdapter

 SqlDataAdapter myAdapter = new SqlDataAdapter(myCommand);

 try

 {

 // open the database connection

 myConnection.Open();

 // fill the DataSet

 myAdapter.Fill(myDataSet, tableName);

 }

 finally

 {

 // always close the connection

 myConnection.Close();

 }

 // return the DataSet

 return(myDataSet);

}

7. Modify the Page_Load event to use the BuildDataSet() method to retrieve the data and

populate the Web list control. Since this needs to be done only when the page first

loads, the code needs to run only when the page hasn’t been posted back.

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // set up SQL query for Manufacturer table

 string CommandText =

 "SELECT ManufacturerID, ManufacturerName FROM Manufacturer";

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 227

 // DataSet with list of manufacturers

 DataSet myDataSet = BuildDataSet(CommandText, "Manufacturer");

 // set up the DropDownList

 lstManufacturers.DataSource = myDataSet;

 lstManufacturers.DataMember = "Manufacturer";

 lstManufacturers.DataBind();

 // set up the RadioButtonList

 RadioButtonList1.DataSource = myDataSet;

 RadioButtonList1.DataMember = "Manufacturer";

 RadioButtonList1.DataBind();

 }

}

8. You now need to change the SelectedIndexChanged event handler for the DropDownList

to use the new BuildDataSet() method to retrieve the results from the database. Change

the lstManufacturers_SelectedIndexChanged as follows:

protected void lstManufacturers_SelectedIndexChanged(object sender,

 EventArgs e)

{

 if (lstManufacturers.SelectedValue != "-1")

 {

 // set up SQL query for Player table

 string CommandText = "SELECT PlayerID, PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage FROM Player WHERE PlayerManufacturerID = " +

 lstManufacturers.SelectedItem.Value;

 // set up the GridView

 GridView1.DataSource = BuildDataSet(CommandText, "Player");

 GridView1.DataMember = "Player";

 GridView1.DataBind();

 }

 else

 {

 // clear the GridView

 GridView1.DataSource = null;

 GridView1.DataBind();

 }

}

9. Switch to the Design view and double-click the RadioButtonList to add its

SelectedIndexChanged event. Add the following code to the event handler:

228 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

protected void RadioButtonList1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 // set up SQL query for Player table

 string CommandText = "SELECT PlayerID, PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage FROM Player WHERE PlayerManufacturerID = " +

 RadioButtonList1.SelectedItem.Value;

 // set up the GridView

 GridView1.DataSource = BuildDataSet(CommandText, "Player");

 GridView1.DataMember = "Player";

 GridView1.DataBind();

}

10. Save the page, and then run it in a browser. Select one of the Manufacturers from either

the DropDownList or the RadioButtonList. The page will post back to the server, and the

list of Players will be presented, based on the Manufacturer selected, as shown in

Figure 6-14.

Figure 6-14. Backing lookup lists with a DataSet

How It Works

The most immediate difference between this example and its DataReader equivalent is that

both the DropDownList and the RadioButtonList are displayed simultaneously. Because of its

forward-only nature, you can bind only one Web list control to a DataReader at a time, which

is why you had only one Web list control in the DataReader examples. In contrast, you can

reuse the contents of a DataTable as many times as you like, so you can use it as a data source

to as many Web controls as you like.

Beyond this fairly large functional difference, however, the code is more or less the same.

You still identify a DataTextField and a DataValueField for each Web list control, and they work

as usual, as does the DataSource property. But there’s a slight variation here that applies when

using a DataSet as the data source. For either type of binding to work, you must identify the

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 229

specific DataTable for the Web control to bind to. In the example, you’ve done this by specifying the

DataMember property in code:

GridView1.DataSource = myDataSet;

GridView1.DataMember = "Player";

Alternatively, you could just set the DataSource to the DataTable directly:

GridView1.DataSource = myDataSet.Tables["Player"];

 The event handlers are all straightforward. Because each handler is associated with a

specific Web list control, you know which one to check for the newly selected Manufacturer.

With that, you can derive the correct SQL query and populate the waiting GridView from the

DataTable storing the results of the query.

Try It Out: Using Lookup Lists and Events with a SqlDataSource

In this example, you’ll perform list binding using the SqlDataSource to provide the data. You’ll

see that if we use the SqlDataSource, rather than a DataReader or a DataSet, you can build quite

complex pages with very little code.

1. Open List_DataReader_Events.aspx and save it as List_DataSource_Events.aspx.

2. Change the <title> of the page to List Binding with Events to a SqlDataSource.

3. If the page is using a Web list control other than the DropDownList, change it back to a

DropDownList and, if necessary, add the DataBound event that you used in the previous

example.

4. Remove all of the code from the page other than the lstManufacturers_DataBound

event handler.

5. Switch to the Design view and add a SqlDataSource to the page. Select Configure Data

Source from the Tasks menu.

6. Select SqlConnectionString from the drop-down list on the Choose Your Data Connection

step, and then click the Next button.

7. On the Configure the Select Statement step, select Manufacturer from the Name drop-

down list and check the ManufacturerID and ManufacturerName columns, as shown in

Figure 6-15. Click the Next button.

8. If you want to test that the results returned are as expected, click the Test Query button.

If they’re not what you expect, click the Previous button to return to the previous step.

Once you’re happy that the results are as expected, click the Finish button.

9. Select the DropDownList and set its DataSourceID property to SqlDataSource1. Switch to

the events list for the control and remove the SelectedIndexChanged event handler.

10. Add another SqlDataSource to the page, select to configure the data source, and select

SqlConnectionString as the connection string to use. Click the Next button.

230 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

Figure 6-15. Configuring the SELECT query for a SqlDataSource

11. On the Configure the Select Statement step, select Player from the Name drop-down list

and the * entry in the columns list. Click Next, and then click Finish to complete this part of

the configuration.

12. In the Properties window for SqlDataSource2, click the ellipsis next to the SelectQuery

property to open the Command and Parameter Editor dialog box.

13. Click the AddParameter button and give the new parameter a name of ManufacturerID.

Select Control as the Parameter Source, and from the ControlID drop-down list, select

lstManufacturers.

14. Click the Query Builder button to launch the Query Builder dialog box. As shown in

Figure 6-16, add @ManufacturerID as the filter for the PlayerManufacturerID column.

You can click the Execute Query option to test that the query is correct.

15. Click the OK button to close the Query Builder, and then click OK again to close the

Command and Parameter Editor dialog box.

16. Select the GridView and change its DataSourceID property to SqlDataSource2.

17. Save the page, and then run it in a browser. Select one of the Manufacturers from the

DropDownList. The page will post back to the server, and the list of Players will be presented

based on the Manufacturer selected. Clicking the “please select...” entry will cause the

GridView to be cleared.

18. Experiment with changing the DropDownList to a RadioButtonList and a ListBox. Notice

again that all three Web controls will have the “please select...” entry, as well as the list of

Manufacturers, and selecting an option displays the same results, regardless of the type

of Web list control that you’re using.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 231

Figure 6-16. Using the Query Builder to filter the list of Manufacturers

How It Works

After having to write code to populate the list and grid, you’ve now come to an example that

requires very little code in order to offer the same functionality. Instead, you’ve used the graphical

tools provided with Visual Web Developer to build the page.

First, we’ll look at the DropDownList and the first SqlDataSource that you added to the page.

Then we’ll look at the GridView and its SqlDataSource, as well as the parameters that it requires.

Finally, we’ll consider some of the limitations of the SqlDataSource.

The DropDownList Control

If you look at the HTML markup for SqlDataSource1, you’ll see that apart from the ID and runat

properties that all Web controls have, the SqlDataSource has two other properties that enable

you to configure the Web control for your purposes: ConnectionString and SelectCommand.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString="<%$ ConnectionStrings:SqlConnectionString %>"

 SelectCommand="SELECT ManufacturerID, ManufacturerName FROM Manufacturer">

</asp:SqlDataSource>

The ConnectionString property sets the connection string that the SqlDataSource will use.

This can be any valid connection string. In this case, you’re using a new construct added

in ASP.NET 2.0 that allows you to automatically retrieve the connection string from the

232 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

<connectionStrings> section of Web.config by specifying the name of the connection string—

in this case, SqlConnectionString:

<%$ ConnectionStrings:SqlConnectionString %>

The SelectCommand property is the query that the SqlDataSource will use to query the

database to return the results. In this case, you return a list with the ManufacturerID and

ManufacturerName entries for all of the Manufacturers in the database.

■Note SelectCommand hints that the SqlDataSource can be used for a whole lot more than just data

binding. As you might guess, it also has corresponding DeleteCommand, InsertCommand, and UpdateCommand

properties, which allow you to do much more. Now that I’ve tempted you with the possibilities, I’m going to

make you wait until Chapter 9 before you get to see these in action.

That completes the configuration of SqlDataSource1. All that’s left is to tell the drop-down

list about its data source. You do this by setting the DataSourceID property of DropDownList1 to

SqlDataSource1.

With the drop-down list, you’re again making use of the DataBound event to add the

dummy entry to the options available. The code is identical to the code you’ve used in the

previous two examples.

Once you’ve configured the DropDownList and the SqlDataSource that it’s binding to, you

don’t need to worry about the data binding, as it takes place automatically between the

OnPreRender and OnPreRenderComplete events in the page life cycle. And it’s here that ASP.NET

applies some intelligence to the data binding.

In the previous examples, the first decision you had to make within the Page_Load event

was whether you needed to bind the DropDownList. You’ll recall that you need to do this only

once, as the contents of the list are remembered across postbacks. The DropDownList is intelli-

gent enough to know when it needs to bind to the data source and does this only the first time

the page is loaded. You can see this by adding a breakpoint to the DataBound event and watch

how many times it’s reached—only once when the page is first loaded.

The GridView Control

In the previous examples, you’ve had to respond to the OnSelectedIndexChanged event to pass

a SQL query to the GridView and tell it to bind itself. We’ll look at the GridView in a lot more

detail in the next chapter, when we cover table binding. Here, we’ll look at how the SQL query

that is executed is constructed.

If you take a look at the data source for the GridView, SqlDataSource2, you’ll see that it’s

remarkably similar to the data source that you’ve used for the DropDownList:

<asp:SqlDataSource ID="SqlDataSource2" runat="server"

 ConnectionString="<%$ ConnectionStrings:SqlConnectionString %>"

 SelectCommand="SELECT PlayerID, PlayerName, PlayerManufacturerID,

 PlayerStorePrice, PlayerStorage FROM dbo.Player

 WHERE (PlayerManufacturerID = @ManufacturerID)">

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 233

 <SelectParameters>

 <asp:ControlParameter ControlID="lstManufacturers"

 Name="ManufacturerID" PropertyName="SelectedValue" />

 </SelectParameters>

</asp:SqlDataSource>

There’s a ConnectionString that points to the correct database, and again, you have a

SelectCommand that details the query that you want to execute. There’s also a new child element,

SelectParameters, which you haven’t seen before.

The SelectParameters collection allows you to specify various parameters to the

SelectCommand query, as shown in Table 6-2.

By setting the parameters in the SelectParameters collection, you can build queries that

are automatically modified depending on form values, query string values, values stored in

cookies or the session, or, as in this case, the value of another Web control on the page:

<asp:ControlParameter ControlID="lstManufacturers"

 Name="ManufacturerID" PropertyName="SelectedValue" />

</SelectParameters>

The ControlID and PropertyName properties of the ControlParameter tell you which Web

control and which property to use. In this case, you have lstManufacturers.SelectedValue,

which returns the ManufacturerID of the selected Manufacturer. The other property that you

need is Name, which is the property, common to all the different parameter types, that allows

you to tie the parameter to the query.

If you take a look at the SelectCommand property, you’ll see that the query actually has a

WHERE clause added that takes a parameter:

WHERE (PlayerManufacturerID = @ManufacturerID)

Table 6-2. SelectCommand Parameter Types

Name Description

ControlParameter Takes its value from another Web control on the same page. The Web
control to use is specified by the ControlID attribute. The property
on the Web control to retrieve the value from is indicated by the
PropertyName attribute.

CookieParameter Uses a value specified in a cookie, indicated by the CookieName
attribute, to set the value of the parameter.

FormParameter Uses a value specified in a form variable, indicated by the FormName
attribute, to set the value of the parameter.

QueryStringParameter Uses a value in the page’s query string, indicated by the
QueryStringField attribute, to set the value of the parameter.

SessionParameter Uses a value in the user’s session, indicated by the SessionField
attribute, to set the value of the parameter.

System.Data.SqlServerCe Provides native access to SQL Server CE for the .NET Compact
Framework

234 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

The parameter you need to provide is @ManufacturerID, and the ControlParameter object

has a name of ManufacturerID. The @ is added automatically, and whatever value is selected in

the DropDownList is used to modify the query to return the correct list of Players.

■Note DeleteCommand, InsertCommand, and UpdateCommand properties also have parameter collections.

We’ll look at DeleteParameters, InsertParameters, and UpdateParameters in Chapter 9.

The SqlDataSource: Panacea?

You may now be thinking that the SqlDataSource is the perfect data source and gets rid of all of

that horrible code that no one really likes writing. Well, to a certain extent it is. However, as

you’ll see shortly when we look at lists that allow multiple selections, there are times when the

SqlDataSource doesn’t quite make the grade.

You also have a little problem here that you didn’t see when you used code to connect to

the database. Although this page appears to have the same functionality, it doesn’t. What

happens when the user selects the dummy entry? In the DataReader and DataSet examples,

you wrote code to clear the GridView when the user selects that entry. You’re not manually data

binding when you use the SqlDataSource, so you have no way, as it stands, of clearing the list

instead of performing the query. When you select the dummy entry, a query is made to the

database that returns no results:

SELECT PlayerID,PlayerName,PlayerManufacturerID,

 PlayerStorePrice,PlayerStorage

FROM dbo.Player

WHERE (PlayerManufacturerID = -1)

In the simple example, this isn’t necessarily an issue, as the number of needless hits that

you’re going to make to the database is quite limited. But what happens when the page is being

used by a hundred or a thousand users?

One solution is to stop the data binding from occurring if the user has selected an invalid

entry. You can do this by responding to the SelectedIndexChanged event of the DropDownList:

protected void lstManufacturers_SelectedIndexChanged(object sender, EventArgs e)

{

 if (lstManufacturers.SelectedValue == "-1")

 {

 GridView1.DataSourceID = null;

 }

 else

 {

 GridView1.DataSourceID = "SqlDataSource2";

 }

}

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 235

This isn’t the most elegant of solutions, but it does prevent needless hits on the database.

Selecting the dummy value in the DropDownList sets the DataSourceID of the GridView to a null

data source. This has the effect of turning off automatic data binding, as the GridView no longer

has a data source to bind to. If the selected entry in the DropDownList isn’t the dummy value,

then you set the DataSourceID back to the correct SqlDataSource, and the data binding takes

place as expected.

You also have the same problem when you first load the page, as the GridView has a valid

data source even if the query that is executed will return no results. There are several ways that

this can be remedied; I’ll leave it up to you to experiment to find out what they are.

■Note There’s nothing stopping you from using the SqlDataSource and its properties within code.

Indeed, any property that you can set within the HTML markup can be modified within code. You’ll see this

when you start changing the SQL query that is executed by directly modifying the SelectCommand property.

Connecting to Other Data Sources

In this example, you’re connecting to a SQL Server database, and the definition of the

SqlDataSource is complete, simply specifying the ConnectionString will connect to the

database. However, this isn’t the whole story. You’re actually providing, by omission in this

example, one further piece of information that the SqlDataSource needs.

The SqlDataSource can be used to connect to any data source, provided that there is a data

provider for it, but as yet, you have not told the SqlDataSource what type of connection string

you’ve provided. You need to do this using the ProviderName property. The ProviderName property

can have several different values, depending on which data provider you want to use. The stan-

dard data providers are listed Table 6-3.

As you can see, the default ProviderName is System.Data.SqlClient, so you don’t need to

specify it when you’re connecting to a SQL Server database; the SqlDataSource assumes, unless

you specify otherwise, that you’re using a SQL Server database.

However, if you’re not connecting to a SQL Server database, as in the MySQL and Access

examples in the code download, you must specify that you want to use a different provider.

You add the ProviderName attribute to the SqlDataSource definition, like this:

Table 6-3. Standard Data Providers

ProviderName Description

System.Data.Odbc Any data source that is accessed through an ODBC driver

System.Data.OleDb Any data source that is accessed through an OLE DB provider

System.Data.OracleClient Provides native access to Oracle databases

System.Data.SqlClient Provides native access to SQL Server databases (default value)

System.Data.SqlServerCe Provides native access to SQL Server CE for the .NET
Compact Framework

236 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString="<%$ ConnectionStrings:OdbcConnectionString %>"

 SelectCommand="SELECT ManufacturerID, ManufacturerName FROM Manufacturer">

 ProviderName="<%$ ConnectionStrings:OdbcConnectionString.ProviderName %>"

</asp:SqlDataSource>

You can either specify the provider you want directly, as in System.Data.Odbc, or set it as

part of the connection string in Web.config:

<add name="OdbcConnectionString"

 connectionString="Driver={MySQL ODBC 3.51 Driver};

 server=localhost;database=players;uid=band;pwd=letmein;"

 providerName="System.Data.Odbc" />

If you set it in Web.config, you can access the providerName property of the required

connection string using this syntax:

<%$ ConnectionStrings:OdbcConnectionString.ProviderName %>

■Note As a shortcut, you can specify the connection string, as we've done here, as just

OdbcConnectionString. If you don’t specify a specific part of the connection string, it’s

assumed that you mean OdbcConnectionString.ConnectionString.

Multiple Selection Lists
The Web list controls that you’ve looked at so far have allowed only a single item to be selected

from the Web control. But what if you want the user to be able to select multiple entries from

the same list?

The ListBox allows you to do this by changing its SelectionMode property from the default

value of Single to Multiple. The one remaining Web list control that we haven’t looked at yet,

the CheckBoxList, also allows the selection of multiple values.

■Note Now that you’ve seen how easy it is to change between a DataReader and a DataSet, you won’t

use both in the example presented here. List_DataSet_Multiple.aspx in the code download is the

corresponding DataSet example.

Try It Out: Using Multiple-Value Lookup Lists with a DataReader

In this example, you’ll see what alternative methods you can employ to deal with Web list

controls that allow multiple selections. You can’t rely on using the SelectedItem property,

because that will return only the first item selected in the list. Instead, you must iterate through

the list each time and build up a SQL query accordingly.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 237

1. In Visual Web Developer, create a new Web Form called

List_DataReader_Multiple.aspx.

2. Change the <title> of the page to Multiple Selection Using a DataReader.

3. Make sure you’ve included the correct Import statements at the top of the page.

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<%@ Import Namespace="System.Text" %>

4. In the Design view, add a ListBox, a Button, and a GridView to the page. Change the Text

for the Button to Select. You can use a table to lay out the Web controls in a more user-

friendly manner, as shown in Figure 6-17.

Figure 6-17. Laying out the Web list controls

5. For the ListBox, set DataTextField to ManufacturerName, DataValueField to

ManufacturerID, and SelectionMode to Multiple.

6. The code for the Page_Load event is pretty much the same as in the previous

DataReader example:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // create SqlConnection object

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 // create SqlCommand object

 SqlCommand myCommand = new SqlCommand();

 myCommand.Connection = myConnection;

238 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

 try

 {

 // open the database connection

 myConnection.Open();

 // set up SQL query for Manufacturer table

 myCommand.CommandText =

 "SELECT ManufacturerID, ManufacturerName FROM Manufacturer";

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the list control

 ListBox1.DataSource = myReader;

 ListBox1.DataBind();

 // close the reader

 myReader.Close();

 }

 finally

 {

 // always close the connection

 myConnection.Close();

 }

 }

}

7. Add a Click event handler for the Button. First, add the code to create the Command

and Connection objects, and then open the connection:

protected void Button1_Click(object sender, EventArgs e)

{

 // create SqlConnection object

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(ConnectionString);

 // create SqlCommand object

 SqlCommand myCommand = new SqlCommand();

 myCommand.Connection = myConnection;

 try

 {

 // open the database connection

 myConnection.Open();

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 239

8. To determine which items were selected in the Web list control, you must iterate through

the Web control and build up the query from the results:

 // set up SQL query for Player table

 StringBuilder Query = new StringBuilder("SELECT PlayerID, PlayerName, ➥

 PlayerManufacturerID, PlayerCost, PlayerStorage FROM Player ➥

 WHERE PlayerManufacturerID IN (");

 bool gotResult = false;

 for (int i=0; i<ListBox1.Items.Count; i++)

 {

 if (ListBox1.Items[i].Selected)

 {

 if (gotResult == true) Query.Append(",");

 Query.Append(ListBox1.Items[i].Value);

 gotResult = true;

 }

 }

 Query.Append(")");

9. Now you find out if any items were checked. If so, you run the query you built. If not,

you clear the grid.

 // get results if we have a selection

 if (gotResult)

 {

 // set the query to execute

 myCommand.CommandText = Query.ToString();

 // run the query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the GridView

 GridView1.DataSource = myReader;

 GridView1.DataBind();

 // close the reader

 myReader.Close();

 }

 else

 {

 // clear the GridView

 GridView1.DataSource = null;

 GridView1.DataBind();

 }

 }

240 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

10. And again, matching the last example, you handle any errors and wrap up the code by

closing the connection:

 finally

 {

 // always close the connection

 myConnection.Close();

 }

}

11. Save the page, and then run it in your browser. You’ll see the ListBox containing the

familiar list of Manufacturers. To select more than one item, hold down the Ctrl key.

Clicking the Select button will cause the GridView to be populated with the Manufacturers

you’ve selected, as shown in Figure 6-18.

Figure 6-18. Multiple selections from a ListBox

How It Works

Much of the code is the same as the previous example, so we won’t go over it here. The major

change is to the code to generate a query for Player information for the GridView.

Rather than responding to the user’s every selection in the list box, you’ve placed the code

to populate the GridView in a button’s Click event. This will allow the user to select several

different Manufacturers before clicking the button to have the Players for the selected Manu-

facturers displayed.

The SELECT query uses the IN keyword to let you search for columns with one of a given set

of values, so you use that to build your query. Your queries take the following shape:

SELECT PlayerID, PlayerName, PlayerManufacturerID, PlayerCost, PlayerStorage

FROM Player WHERE PlayerManufacturerID IN (1,2)

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 241

You’ll need code that inserts the ID number for each selected Manufacturer into the query.

You’re using a StringBuilder, rather than normal string concatenation, as the StringBuilder is

more efficient. You first add the start of the SELECT query you want to execute, like so:

// set up SQL query for Player table

StringBuilder Query = new StringBuilder("SELECT PlayerID, PlayerName, ➥

 PlayerManufacturerID, PlayerCost, PlayerStorage ➥

 FROM Player WHERE PlayerManufacturerID IN (";

The strategy here is to iterate through each item in the list and see if it has been selected.

Fortunately, each ListItem object has a Selected property, which is true if it has been selected

and false otherwise. If it has been selected, you pull its Value into the query.

bool gotResult = false;

for (int i=0; i<ListBox1.Items.Count; i++)

{

 if (ListBox1.Items[i].Selected)

 {

 if (gotResult == true) Query.Append(",");

 Query.Append(ListBox1.Items[i].Value);

 gotResult = true;

 }

}

You’ve included the Boolean gotResult to keep track of whether anything has been selected.

You need to comma separate the selected entries, so you use gotResult to decide if you need to

add a comma to the end of the query.

The gotResult variable is also used to decide whether you need to populate the GridView.

If the user has selected at least one entry in the ListBox, you set the CommandText property of the

Command object and execute the query to populate the GridView. If the user has unselected all

the items in the list, you clear the GridView. This will ensure that the list of Players doesn’t

appear when you don’t have a Manufacturer selected:

if (gotResult)

{

 myCommand.CommandText = Query.ToString();

 // run the query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set up the GridView

 GridView1.DataSource = myReader;

 GridView1.DataBind();

 // close the reader

 myReader.Close();

}

242 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

else

{

 // clear the GridView

 GridView1.DataSource = null;

 GridView1.DataBind();

}

So nothing much has changed really. You’re modifying the query that you want to execute

to handle multiple selected values, but the rest of the code remains the same. The same is true

if you look at the DataSet version of the page in the code download.

However, all is not the same when you want to use a SqlDataSource.

Try It Out: Using Multiple-Value Lookup Lists with

a SqlDataSource

In this example, you’ll see how you need to write code when you want to control how the

SqlDataSource behaves.

1. In Visual Web Developer, create a new Web Form called List_DataSource_Multiple.aspx.

2. Change the <title> of the page to Multiple Selection Using a SqlDataSource.

3. Make sure you’ve included the correct Import statement at the top of the page.

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Text" %>

4. In the Design view, add a ListBox, a Button, and a GridView to the page. Change the Text

for the Button to Select. You can use a table to lay out the Web controls in a more user-

friendly manner, as shown earlier in Figure 6-17.

5. For the ListBox, set DataTextField to ManufacturerName, DataValueField to

ManufacturerID, and SelectionMode to Multiple.

6. You need two SqlDataSource controls for this example, but rather than using the

graphical tools to create them, you can add them directly to the HTML markup. Switch

to the Source view and add the definitions for the two SqlDataSource controls at the top

of the page:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString="<%$ ConnectionStrings:SqlConnectionString %>"

 SelectCommand="SELECT ManufacturerID, ManufacturerName FROM Manufacturer">

</asp:SqlDataSource>

<asp:SqlDataSource ID="SqlDataSource2" runat="server"

 ConnectionString="<%$ ConnectionStrings:SqlConnectionString %>">

</asp:SqlDataSource>

7. Switch to the Design view and set the DataSourceID for the ListBox to SqlDataSource1

and for the GridView to SqlDataSource2.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 243

8. Add a Click event handler for the Button. Then add the following code:

protected void Button1_Click(object sender, EventArgs e)

{

 // set up SQL query for Player table

 StringBuilder Query = new StringBuilder("SELECT PlayerID, PlayerName, ➥

 PlayerManufacturerID, PlayerCost, PlayerStorage FROM Player ➥

 WHERE PlayerManufacturerID IN (");

 bool gotResult = false;

 for (int i = 0; i < ListBox1.Items.Count; i++)

 {

 if (ListBox1.Items[i].Selected)

 {

 if (gotResult == true) Query.Append(",");

 Query.Append(ListBox1.Items[i].Value);

 gotResult = true;

 }

 }

 Query.Append(")");

 if (gotResult)

 {

 // set the correct SelectCommand

 SqlDataSource2.SelectCommand = Query.ToString();

 }

 else

 {

 // clear the GridView

 SqlDataSource2.SelectCommand = null;

 }

}

9. Save the page, and then run it in your browser. You’ll see the ListBox containing the list

of Manufacturers. To select more than one item, hold down the Ctrl key. Clicking the

Select button will cause the GridView to be populated with the Manufacturers you’ve

selected, as shown earlier in Figure 6-18.

How It Works

Here’s one good example of where the SqlDataSource is not the panacea you might have initially

thought it was.

The SqlDataSource is ideal when the query that you’re executing is simple—or more correctly,

any parameters that you want to add to it are simple. It works well when all you need to do is

find if x = 1 or y < 3, and so on. But it falls down when you need to use conditional statements

244 C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G

such as IN, and the parameter can’t just be added to the query that you want to execute. In

these cases, you need to massage the query and change the SelectCommand for the SqlDataSource.

The first change that you’ll notice is that the second SqlDataSource on the page has a

ConnectionString, but it doesn’t have a SelectCommand:

<asp:SqlDataSource ID="SqlDataSource2" runat="server"

 ConnectionString="<%$ ConnectionStrings:SqlConnectionString %>">

</asp:SqlDataSource>

This is perfectly valid, and all it means is that no data binding will take place when a Web

control uses this as its data source—no SelectCommand, no automatic data binding. So the page

when it first loads won’t connect to the database to try to show a list of Players in the GridView.

In order for the automatic data binding to occur, you must add a SelectCommand. And this

is exactly what you do in the Click event handler for the button on the page.

The query is constructed in exactly the same way as you saw in the DataReader example.

If the user has made a selection from the list, you have a query that you want to run, and you

set the SelectCommand property:

SqlDataSource2.SelectCommand = Query.ToString();

Once you’ve set the SelectCommand to the query, you can let the automatic data binding

occur. As you’ll recall, this happens after the OnPreRender event, so as long as you’ve set the

SelectCommand before, you’ll be able to rely on the automatic data binding.

If no selection has been made, you don’t want to run a query. So, you remove the

SelectCommand by setting it to null:

SqlDataSource2.SelectCommand = null;

As there’s no query to execute, the automatic data binding won’t occur, thus clearing

the GridView.

Summary
You don’t have to surf far on the Web to find parallels between the examples you’ve seen in this

chapter and, for example, the pages of an e-commerce or a business Web site where individual

pieces of information are placed all around the page, as well as in an orderly list or grid. Dealing

with read-only data is a big subject, and you’ve learned just the basics in this chapter.

In this chapter, we’ve looked at several ways to handle data binding:

• You learned how to inline-bind a piece of information from the current row in the

DataReader or from a DataSet to the property or the text value of a Web control on

the page.

• You learned about an alternative to inline binding that involves directly accessing the

data source to return the required information directly.

• You learned how to list-bind Web controls such as the DropDownList, RadioButtonList,

and ListBox. This requires you to nominate a column for the text of each list item and

another column to act as the value for each list item.

C H A P T E R 6 ■ I N L I N E A N D L I S T B I N D I N G 245

• You saw that the DataReader, DataSet, and SqlDataSource can be used as the data source

for list binding.

• The SqlDataSource, though a great Web control to have in our toolbox, isn’t the panacea

that you may have thought it was. You saw various examples of when you need to massage

it a little to get it to perform exactly as desired.

In the next chapter, we’ll continue our exploration of data binding by looking at table

binding. You’ll learn how to show the list of results in pretty much any format you require using

the Repeater, DataList, and GridView.

You’ll also start to see the power that the GridView provides, as well as how you can imple-

ment pages that, in the past, would have required a lot of hard work to develop. Because the

GridView can perform a lot of complex functions automatically, hard-working developers now

have time for the finer things in life.

